Stationary measure
$$\mu = (\mu_1, ..., \mu_n)$$
 if MC
has a states : $\mu = \mu P$
after transitive for one step
remarks the same
eignector conceptuality to eignal 1
of P
Such stat meas always exists as long as SXN
has a recurrent state X (Kolmagorov's cycle
 $p_x(y) \triangleq \sum_{n=0}^{\infty} |P_x(X_n = y, T_X > n)$
Stat dist: a normalized version of stat meas. A
 $T_i = \frac{\mu_i}{2}$

$$\pi_i = \frac{\gamma}{\sum_{j=1}^n \mu_j}$$

such that components sum up to 1 and ave non-negative.

For
$$(X_n)$$
 inclucible and recurrent, $\exists f \ge 0, f = f_n$
stat dist exists $\iff \sum_{\substack{j=1\\j=1}}^n f_j < \infty$
I $T_i = \frac{f_i}{\sum_{\substack{j=1\\j=1}}^n f_j}$
 $T_i = \frac{f_i}{\sum_{\substack{j=1\\j=1}}^n f_j}$
 $T_i = \frac{f_i}{|E_i T_i|}$
 $T_i = \frac{f_i}{|E_i T_i|}$
 $T_i = \frac{f_i}{|E_i T_i|}$
 $S_0: \text{ positive recur and the existence of T
basically the same !
Remark: By def of T ,
 $\forall i \in S, T_i = \sum_{\substack{j=1\\j=1}}^n T_j f_j i$
 H
 $\frac{f_i}{|E_i T_i|}$
 $\sum_{\substack{j=1\\j=1}}^n f_j i \frac{f_i}{|E_j T_j|}$$

If
$$\{Xn\}$$
 is ergodic (irred, pos-recurrent, aperiodic),
for any initial dist of Xo, limiting dist
is stat dist!
aportodicity is required!
Counter ey: $S = \{o, i\}, Xo = o, P = \begin{bmatrix} o & j \\ i & o \end{bmatrix}$
 $0 \rightarrow i \rightarrow 0 \rightarrow i \rightarrow 0 \rightarrow i - - -$

limiting dist does not exist!

e. V: RW on graph, more to neighbor with equal prob
each vertex v hoss degree dv, check the stat dist is
$$\pi v = \frac{dv}{d}, \text{ where } g \stackrel{a}{=} \sum_{u \in V} du.$$

$$gf:$$
(): $\forall v \in V, \pi v \ge 0$
(2): $\sum_{v \in V} \pi_v = \frac{z = v dv}{d} = 1$
(3): Check $\pi = \pi P$, $\forall v \in V, \pi_v = \sum_{u \in V} \pi_u P_{uv}$
RHS = $\sum_{v \in V} \frac{du}{d} \cdot \frac{1}{du} \cdot I_{su \sim v} = \frac{1}{d} \sum_{u \in V} I_{su \sim v}$
 $= \frac{dv}{d} = \pi_v$

e.g.: (b.4.8) At time n, Yn portides enter, Yn
$$\xrightarrow{1+2}{d} P(\lambda)$$

lifethne of particles i.i.d. ~ G(p), Xn = # of particles an
the system of time n. Show (Xn) Markov, and find TT.
Pf: From time n-1 to n, Yn portides added,
come of Xn-1 particles vanish.
G(p) memoryless,
no metter how larg a particle has
lived, the probability of vaniching is always P
For $\nexists \sim G(p)$, $\forall n \in IN$,
 $IP(\cancel{R} \ge n+1 | \cancel{R} \ge n) = \frac{IP(\cancel{R} \ge n+1)}{IP(\cancel{R} \ge n)} = 1-P$
A: Mennoncless property is the key for (Xn)
to be Markov (discrete - G(p))
 $Cte - E(\lambda)$
Among Xn-1 perticles, there are $B(Xn-1, 1-p)$
perticles alive.
 $X_n = \underbrace{\sum_{i=1}^{X_{n-1}} f_{i+1}^{(n)} + Y_n (f_{i-1}^{(n)} \sim B(1, 1-p)) = i \cdot i \cdot d.$
with $\{Y_n\}, \{X_n\}, \{q^{(n)}\}, \{q^{(n)}\}$ indep.

Then

$$IP(X_{n} = X_{n} | X_{0} = X_{0}, --, X_{n-1} = X_{n-1}) =$$

$$IP(\sum_{i=1}^{n-1} 1_{i} + Y_{n} = X_{n} | X_{0} = X_{0}, --, X_{n-1} = X_{n-1})$$

$$IP(\sum_{i=1}^{n-1} 1_{i} + Y_{n} = X_{n}) = IP(X_{n} = X_{n} | X_{n-1} = X_{n-1}) \checkmark$$

Let π be stat dist so that $\forall i, \pi i = \sum_{j} \pi_{j} \cdot P_{ji}$, $P_{ji} = IP(X_{n} = i | X_{n-i} = j) = IP(\sum_{k=1}^{a} f_{k}^{(n)} + Y_{n} = i)$ $= \left\{ \sum_{k=0}^{i} {a \choose k} (i - p)^{k} p^{a-k} \cdot \frac{X^{i-k}}{(i - k)!} e^{-\lambda} \quad \text{if } i \in j$ $\int_{k=0}^{a} {a \choose k} (1 - p)^{k} p^{a-k} \cdot \frac{X^{i-k}}{(i - k)!} e^{-\lambda} \quad \text{if } i \in j$ So: $\forall i, \pi_{i} = \sum_{j=0}^{\infty} \pi_{j} \cdot \sum_{k=0}^{i \wedge j} {a \choose k} (1 - p)^{k} p^{a-k} \cdot \frac{X^{i-k}}{(i - k)!} e^{-\lambda} \quad \text{if } i \in j$

It's very hard to compute T by def
due to the structure of
$$\underline{J}_{k=1}^{\underline{a}} p_{k}^{(n)} + Tn$$

(sum of indep v.v.)

$$F_{\mu} = e^{-\frac{\lambda}{P}} \cdot e^{-\frac{\lambda}{\lambda}} \cdot \frac{\lambda^{2}}{\sum_{k=0}^{2}} (1-p)^{k} \cdot (p\lambda)^{-k} \frac{1}{(\frac{1}{2}+k)!}$$

$$= e^{-\frac{\lambda}{P}} \cdot \frac{\lambda^{2}}{\frac{1}{2}!} \cdot \frac{\lambda^{2}}{\frac{1}{2}!} = \frac{\lambda^{k}}{\frac{1}{2}!} \cdot \frac{1}{\frac{1}{2}!} \cdot \frac{\lambda^{k}}{\frac{1}{2}!} = \frac{\lambda^{k}}{\frac{1}{2}!} \cdot \frac{2}{\frac{1}{2}!} \cdot$$

We checked that $\pi = \partial(\frac{\lambda}{P})$ is stat dist by def.

e.g. (b.4.11)
A
B
C(a): Find IEATA, TA is first hitting time to A
encopt time o

$$\frac{(1f)}{E}: \text{ Mean vecurrence time} \rightarrow \text{ stat dist}$$
By symmetricity, $TA = TB = TT_D = TT_E$
So: $TT = (\alpha, \alpha, 1-4\alpha, \alpha, \alpha)$ with $\alpha \in [0, \pm]$
By def, $TC = TA \cdot PAC + TB \cdot PBC + TD \cdot PDC + TTE \cdot PEC$
 $1-4\alpha = 2\alpha$, $\alpha = \frac{1}{5}$
 $TT = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$
 $IEATA = \frac{1}{TTA} = \boxed{b}$
(b): Find expected \pm of visits to D before
veturning to A.
 $\frac{2f}{E}: \text{ Consider } PA(D) = \frac{2\alpha}{n=\alpha} IPA(Xn = D, TA > n)$ as stat
meas. (since all cintes vecurrent).
By uniqueness of stat meas for irred pos recurrent
Markov cham, $T_p = \frac{PA(D)}{\sum PA(S)}$

$$\sum_{s} P_{A}(s) = \sum_{s} \sum_{n=0}^{\infty} |P_{A}(X_{n}=s, T_{A}>n)|^{\overline{tubmis}} \sum_{n=0}^{\infty} |P_{A}(T_{A}>n)$$
$$= |E_{A}T_{A}$$
$$S_{0}: P_{A}(D) = T_{D} \cdot |E_{A}T_{A} = \frac{1}{b} \cdot b = \boxed{1}$$

(c): Find expected # of visits to c before returning to

$$\Delta f$$
: Similarly, $P_A(c) = \pi c \cdot IE_A T_A = \frac{1}{3} \cdot b = 2$

(d): Find expected time of first return to A, given
no prior visit to E. (*)
Bf: IEA(TA|TE>TA) (first step decomp)
=
$$\sum_{s} IPA(X_1=s|TE>TA) \cdot IEA(TA|TE>TA, X_1=s)$$

II Markov
 $\int_{s=A}^{1} IES(TA|TE>TA) \cdot IEA(TA|TE>TA, X_1=s)$

What are the probabilities IPA(XI=S(TE>TA)? $\frac{IP_{A}(X_{I}=S, T_{E}>T_{A})}{IP_{A}(T_{E}>T_{A})} =$

$$= \frac{IP_A(X_I=s) \cdot IP_A(T_E > T_A|X_I=s)}{IP_A(T_E > T_A)}$$

$$= \frac{IP_A(T_E > T_A)}{IP_A(T_E > T_A)}$$

$$= \frac{IP_A(T_E > T_A)}{IP_A(T_E > T_A)}$$

Everything reduces to calculating IPs (TE>TA) for
First step decomposition:

$$IPA(TE>TA) = \sum_{s} IPA(X_{i}=s) \cdot IPA(TE>TA|X_{i}=s)$$

$$Marken = PAA \cdot I + PAB \cdot IPB(TE>TA) + PAc \cdot IPc(TE>TA) + PAc \cdot IPc(TE>TA) + PAC \cdot IPc(TE>TA)$$

$$A \quad similar \quad expansion \quad holds \quad for \quad IPB(TE>TA), \quad --\cdots$$
So:

$$\begin{cases} IPA(TE>TA) = \frac{1}{2} IPB(TE>TA) + \frac{1}{2} IPc(TE>TA) \\ IPB(--) = \frac{1}{2} + \frac{1}{2} IPc(--) \\ IPc(--) = \frac{1}{2} IPc(--) \end{cases}$$

$$\begin{cases} IP_{A}(T_{E} > T_{A}) = \frac{5}{8} \\ IP_{B}(--) = \frac{3}{7} \\ IP_{C}(--) = \frac{1}{2} \\ IP_{D}(--) = \frac{1}{7} \end{cases}$$

So:

$$\begin{bmatrix}
P_{A}(X_{1}=A|TE>TA) = \frac{P_{A}(X_{1}=A) \cdot I}{P_{A}(TE>TA)} = 0 \\
P_{A}(X_{1}=B|TE>TA) = \frac{P_{A}(X_{1}=B) \cdot P_{B}(TE>TA)}{P_{A}(TE>TA)} = \frac{3}{3} \\
P_{A}(X_{1}=c|--) = \frac{2}{3} \\
P_{A}(TE>TA) = 1 + \frac{3}{3} \cdot P_{B}(TE>TA) + \frac{2}{3} \cdot P_{C}(TE>TA) \\
P_{A}(TE>TA) = 1 + \frac{3}{3} \cdot P_{B}(TE>TA) + \frac{2}{3} \cdot P_{C}(TE>TA) \\
P_{A}(TA|TE>TA) = 1 + \frac{3}{3} \cdot P_{B}(TA|TE>TA) + \frac{2}{3} \cdot P_{C}(TE>TA) \\
P_{A}(TA|TE>TA) = 1 + \frac{3}{3} \cdot P_{B}(TA|TE>TA) + \frac{2}{3} \cdot P_{C}(TE>TA) \\
P_{A}(TA|TE>TA) = 1 + \frac{2}{3} \cdot P_{A}(TE>TA) + \frac{2}{3} \cdot P_{C}(TE>TA) \\
P_{B}(X_{1}=A|TE>TA) = \frac{P_{B}(X_{1}=C) \cdot P_{C}(TE>TA)}{P_{B}(TE>TA)} = \frac{1}{3} \\
P_{C}(X_{1}=A|TE>TA) = \frac{P_{C}(X_{1}=B) \cdot P_{B}(TE>TA)}{P_{C}(TE>TA)} = \frac{1}{3} \\
P_{C}(X_{1}=B|TE>TA) = \frac{P_{C}(X_{1}=B) \cdot P_{B}(TE>TA)}{P_{C}(TE>TA)} = \frac{1}{3} \\
P_{C}(X_{1}=P|TE>TA) = \frac{P_{C}(X_{1}=B) \cdot P_{C}(TE>TA)}{P_{C}(TE>TA)} = \frac{1}{3} \\
P_{C}(X_{1}=C|TE>TA) = 1 \\
P_{C}(X_{1}=C|TE>TA) = 1 \\
P_{C}(TE>TA) =$$

Ty some reasoning in (b), answer is $\pi'_{D} \cdot |E_A(T_A | T_E > T_A) = \frac{1}{28} \cdot \frac{14}{5} = \boxed{10}$